
Model Checking Verification and Validation at JPL and the NASA Fairmont 
IV&V Facility1 - 

Frank Schneider, Jet Propulsion Laboratory, California Institute of 
Technology, Steve Easterbrook, NASA IV& V Facility, Jack  Callahan  and  Todd Montgomery, 
West Virginia University 
Contact: Francis.L.Schneider@pl.nasa.gov 

Abstract 

We  show  how a  technology  transfer  effort  was  carried  out.  The successhl use  of  model  checking  on  a  pilot  JPL 
flight  project  demonstrates  the  usefulness  and  the  efficacy  of  the  approach,  The  pilot  project  was  used  to  model  a 
complex  spacecraft  controller. S o h a r e  design  and  implementation  validation  were  carried  out  successfully. To 
suggest  future  applications we  also  show  how  the  implementation  validation  step can be  automated.  The  effort  was 
followed  by the  formal  introduction of the  modeling  technique as a  part of the JPL Quality  Assurance  process. 

Introduction 

Following the pilot use of model checking at NASA JPL  and the IV&V Facility [l], and at 
NASA Ames[2], we have followed five steps in introducing  model checking to the Quality 
Engineering process at JPL. First, references [ l ]  and [2]  show  model checking to be an effective 
tool in validating the behavior of spacecraft systems. Second, our model checking results were 
then carried forward  to validate the software implementation for the presence of design 
anomalies.  Third,  having  validated the implementation by hand, we show how the process can be 
automated. Fourth, we have  documented the process to be  used in a development environment by 
incorporating and generalizing the above elements. Finally, we are engaged in applying the 
methodology developed  here on future spacecraft. 

Model Checking as a Validation Tool 

We  use  model checking to mean the process of (1) abstracting a partial specification from 
requirements and design elements for a reactive system and (2) applying reachability analysis to 
the resulting partial specification to validate that it has properties of interest. A reactive system is 
one that takes input from its environment at unpredictable times and responds according to  a 
specific set of rules. We have previously shown model  checking to be an effective tool in 
validating the behavior  of  a fault tolerant embedded  spacecraft controller [l]. That case study 
shows that by judiciously abstracting away extraneous complexity, the state space of the model 
could be exhaustively searched allowing critical functional requirements to be  validated down to 
the design level. The system we validated was a  two-fold  redundant spacecraft controller. It 
consists of a prime system that controls the spacecraft bus  and  a backup system. The backup 
system receives synchronization information from the prime system via the spacecraft  bus. The 
purpose of the system is two fold. First, it has to respond to and repair must-fix-spacecraft faults. 

' The research described in this paper was carried out by the  Jet Propulsion 
Laboratory, California Institute of Technology, under a contract with the 
National Aeronautics and Space Administration. 

mailto:Francis.L.Schneider@pl.nasa.gov


Second, it must complete execution of high priority sequences. To realize these goals two 
mechanisms were utilized. 

First, the system uses a checkpointing scheme that allows: 

Execution to be frozen when  a fault occurs 
Repair of the fault somewhere in the spacecraft 
Rollback to the start of the last incomplete subsequence 
Resumption of sequence execution 

Accordingly, the checkpointing scheme allows efficient sequence execution since completed 
subsequences need  not  and in many cases can not be repeated. The checkpointing scheme 
requires three seconds of aging for each new checkpoint before the new checkpoint is considered 
to have been encountered. This is caused by fault leakage detection time such that a fault at the 
end of a previous subtask  may  not  be  detected  until  up to three seconds after the beginning of a 
new subtask. This could mean that the fault precluded instructions at the end of the previous 
subtask from  being executed. 

Second, the overall redundancy of the system made up of prime and backup controllers allows 
the entire prime controller to fail. Failure is detected by the backup system that then becomes 
prime and takes over execution where the failed system halted. The backup system becomes 
prime; takes over control of the spacecraft bus; completes repairing the fault; rolls back to the 
start of the last incomplete subsequence and resumes execution of the sequence. Figure 1 
illustrates the architecture involved. Further details can be  found  in reference [l]. 

The initial abstracted design state space contained about 287 states.  By this statement we mean 
that we estimate there to  be 2" different combinations of variable values and conditions that 
completely describe every possible configuration of the spacecraft controller. There are five 
types of faults such that the controller is required to respond to one  type of fault at a time. 
Because fault detection and  recovery requirements could be  handled  one-at-a  time, the 
requirements were partitioned into five equivalence classes accordingly  reducing the state space 
to be searched significantly. The state space was further reduced by removing states from the 
finite state machine representation that did  not contribute to the checkpointing scheme we were 
attempting to validate. This gave rise to a  new estimate of about 100, 000 states. The resulting 
Hare1 Chart [3] for the abstracted spacecraft controller is that shown in Figure 1 .  



Example: Sequence execution  segment: 

Time  Markers  [sec]  since  start 
of subsequence or last  mark  point 

I I r 
PRIME NOMINAL 

/ \ 

online 

State Data 
Packet 

Figure 1 

The  validation was accomplished with the SPIN model  checking  system [4]. Six separate 
rollback requirements on the rollback scheme were validated. Three anomalies were uncovered 
with  the  model checker traversing about 130,000 states for each anomaly  with run time being 
approximately 30 seconds for each anomaly. 

Anomaly one resulted from repeated  prime failure causing loss of synchronization with the 
backup system. This result occurs when the prime system experiences repeated intermittent 
failures possibly due to the same fault, and such that the prime  system repairs the fault in less 
than one second. According to our model this would  mean that notice  of the fault would never be 
propagated to the backup system. Consequently, the backup  system could get significantly ahead 
of the prime system in the execution of its own copy of the sequence. Then should the prime 
system  subsequently fail, the backup system could roll back to an incorrect  location. This 
anomaly is due to the ordering of processing described in the requirements specification. 

Anomaly two depends on how faults are handled at the end of the sequence.  Should  a fault 
occurrence be detected up to within three seconds of execution of the last instruction, there 
would  be  no rollback after repair of the fault. This is the case since the last instruction in the 
sequence was not identified as a  checkpoint. However, should  a  fault occur prior to the end of 



the sequence, according to the fault leakage detection rule there is no guarantee that all 
instructions at the end of the sequence would  have  been successfully executed. Our validation 
run failed because  our  model  assumed  that  once the sequence completed, the backup and the 
prime systems returned to the Power Up Idle state; accordingly, there would be no sequence to 
return to once the fault was corrected. This anomaly is due to a  missing requirement. 

The third  anomaly concerns the occurrence of a fault 2 seconds after a checkpoint is encountered 
in the prime string. The prime string freezes its aging function at n + 2 seconds. Since faults that 
occurred  in  the previous second are not  broadcast to the backup system until the current second it 
will  continue  to execute, aging its checkpoint by one further second. At this point the backup 
system receives  notice of the fault and freezes its aging process. However, it now has an 
erroneous rollback  point. Should the prime system subsequently fail, the backup system would 
roll back  to an incorrect address. This requirement is an error in the detailed requirements. This 
is so since the error would  not go away by making the checkpoint-aging buffer shallower or 
deeper. It would just make the anomaly occur at a different location. 

Software Implementation Validation 

We  have  subsequently validated the implementation  for the presence of the three design anomalies. 
For this purpose  we  used  a special purpose spacecraft simulator called the High Speed Simulator 
(HSS) [ 5 , 6 ] .  The simulator uses code identical to the real  spacecraft.  However, it is de-coupled 
from hardware and telemetry. Accordingly, its use as a test vehicle (1) is an accurate measure of 
system functionality and (2) it allows rapid  turnaround on test suite creation, execution, and 
reporting of results. 

The simulator allows test engineers to write test sequences for execution on the simulator. Given 
the data structures present in the spacecraft controller, a Tool command  language (Tcl) program is 
written that orchestrates (1) the execution of the test sequence, (2) the extraction and printing of 
values of  selected data attributes (3) the extraction and printing of any  relevant time stamps and (4) 
fault injection scenarios and their responses. 

1.1 Procedural Steps 

We wanted  to know if the software implementation contained the same anomalies as were found in 
the design. To determine this, we supplied the High Speed Simulator with a  simple sequence 
program  for  execution.  By injecting faults into the running sequence, the same problematic 
conditions would  be set up in the implementation that were discovered by design validation. Our 
earlier validation  work derived the design anomalies from a three-step process. First, the prime 
system would stop running freezing its check point ager in response to a fault occurrence 
somewhere in the spacecraft. Second, the prime  system  would  load and begin execution of a fault 
recovery  program. Finally, during its execution of the fault recovery  program, the prime system 
itself would fail. To affect this same  scenario in the software implementation, the prime system was 
commanded  to  do  a cold boot at execution points in the implementation identical to those that 
caused the anomalies in the design validation. An operational backup  system considers the prime 



system cold boot to be a prime system failure. It reacts by becoming prime itself; taking control of 
the spacecraft bus; rolling  back to the relevant earlier check point address if necessary;  and 
resuming execution of the sequence program. For example, the third anomaly found in the design 
validation process occurs  when the prime system fails after encountering a fault scenario that 
freezes its check point at second two in the aging process. This results in the new prime system 
rolling back to an inappropriate address due to a timing  problem  in the design. Accordingly, cold 
booting the prime system  when it has aged its checkpoint by two seconds has the same effect as the 
two step process considered in the design case. 

Detection of the presence of design anomalies in the implementation was done by selecting data 
structures for output  identical to those used in the design case. These output data values taken 
together at any execution cycle represent the state of the implementation at a particular point in 
time. As the implementation executes, this 'state  vector' describes a finite state machine that 
represents the implementation. This finite state machine is  an abstracted finite state machine since 
it doesn't include all variables, only the ones considered relevant to the current validation. If a 
corresponding design anomaly is itself present in the implementation, the implementations' 
abstracted state vector  will go through an equivalent sequence to that found in the design validation 
done earlier. In this case the work  proceeded by outputting each state vector for the executing 
implementation. The  output list was then manually  examined line by line to look  for the presence 
of anomaly states. 

The input sequence program that was incorporated into the HSS Tcl interface program to check for 
the presence of anomalies in the implementation is shown in Figure 2. 

IP 
800 
803 
805 
807 
809 
80b 
80d 
80f 
81 1 
813 
815 
817 
819 
81b 
81d 
81f 
82 1 
823 
825 

Mnemonic 
BEGIN 
NOP 
NOP 
NOP 
NOP 
NOP 
CHECKPOINT 
NOP 
NOP 
NOP 
NOP 
NOP 
CHECKPOINT 
NOP 
NOP 
NOP 
NOP 
NOP 
END 

Figure 2 Sequence Validation Program 



To keep the analysis as straight forward as possible, each instruction was executed on one-second 
boundaries.  A HSS Tcl interface program was written to generate the output state vector sequence 
of the abstracted implementation state  machine. Schematically, the overall process is shown in 
Figure 3. 

Commands for 

Figure 3: Implementation Abstracted State Machine 

The implementation was validated at this point by simply  looking at the results of the simulation 
by  hand and recognizing that  a design anomaly was or was not  reproduced in the output. This 
means  visually examining the output sequence labeled  “Abstracted State Vectors” to check the 
rollback process functionality. Two of the three anomalies found  in the design validation were 
present in the implementation. A  brief  summary of the results follows. 

Implementation Anomaly Validation Results 

The first anomaly resulted from repetitive errors that caused the prime  and the backup system to get 
out of synchronization. Our design anomaly fault scenario required  a series of prime-fault-repair 
sequences each of one-second  duration or less. We  did  not see the first anomaly in the system. 
Further investigation with system engineers revealed that all faults take at least several minutes to 
repair. Therefore, repair time was extended so that anomaly  one  would  not be seen. 

The second anomaly occurs when  a fault occurs less than three seconds after the sequence ends. In 
this case, there is no rollback. That is, once the sequence has been  completed there is no rollback in 
response to an error injected inside the three-second-rollback window. Therefore, there is no 
guarantee that all instructions at the end of the sequence would  have  been carried out by the 
spacecraft. Accordingly, on this basis, the last instruction in the program should have been 
identified as a rollback point.  Our technique demonstrated that the second anomaly was present in 
the implementation. 

The  third anomaly results from a fault that brings the prime system down when its aging buffer 
contains  a check point rollback address that has been aged by two seconds. According to our  model 
checking validation, this information would not get to the backup  system  until the following 



second, thereby  causing its two deep backup  buffer to age its rollback address by an additional 
second. Consequently, its rollback address would  be consistent with a three-second delay following 
a checkpoint when  only two seconds had  elapsed since the prime string had  executed its last 
instruction. Prime system failure was again caused by cold booting the prime string at the point it 
had aged its checkpoint by two seconds.  The  subsequent rollback in the new  prime system did not 
match the old prime's rollback address. Accordingly,  our technique demonstrated that the third 
anomaly was present  in the implementation. 

The cold  boot  process is equivalent to the injection of a single fault that brings the prime system 
down. This process causes the overall spacecraft controller to fail to conform to requirements since 
control in the new prime system rolls back  to an inappropriate location. Therefore, our technique 
also demonstrated  that the overall system made  up of prime and backup systems was not single 
fault tolerant. 

All of these results were taken with respect to the spacecraft software as it existed on the High 
Speed Simulator. 

Automating the Validation Process 

Dillon and  Ramakrishna show how test oracles can  be generated from  linear  temporal logic 
specifications [7]. Log files generated from a  running implementation can then drive these 
automata. The log files generated are used  to  drive requirements automata into  accepting states 
should strings from the language they accept be  traversed and output by the implementation. The 
automata are usually specified to check for requirements violations. Using  these ideas, we have 
extended our  work on design verification and validation [ 11 and applied it to the validation of the 
generic spacecraft controller's implementation. Our results used the output of the running 
spacecraft simulator  system. The real time output was used to drive the automaton that represents 
one of the  anomalies found by model checking. The resultant system was then  made up of the 
spacecraft simulator; the test scenario generator, and automaton representing the requirement to 
be tested. The result  system, called the Automated Validation System (AVS) did detect a counter 
example in the output indicating the presence of the design anomaly in the implementation. 
Additionally, the automaton has the capability  to output the state vector trail taken by the 
implementation as it encountered the anomaly  thereby giving information on how the anomaly 
develops as execution proceeds. 

We have proposed  that this concept be used as a fault protection mechanism  on autonomous 
spacecraft. These spacecraft have self sufficient activities based on a set of  high-level  mission 
objectives carried  on  board the spacecraft. See for example [lo]. The AVS would provide an 
effective and  robust fault detection and response system for such spacecraft. The steps to be 
followed are outlined below. 

1.  Intercept  the  autonomously  developed activity or action routine  that  the spacecraft is to carry out  based 

2. Parse  the  mission profile or its more detailed on-board-generated  requirements  and derive from  them the 
upon  and derived from the  current  mission profile. 

logical condition that  represents  the  requirements  that  are  to  hold  during  and  at termination of the 
executing action routine. 

3. Express  the logical condition  in  the  linear  temporal logic (LTL). 



4. 

5. 
6. 

7. 
8. 

Define  any  macros  that  may be necessary to  map  the derived LTL  automaton  into  any required ancillary 
form. 
Produce  the  executable  fault detection automaton  from  the  LTL  formula  derived  from  steps 3 and 4. 
Annotate the action routine so that it outputs  an abstracted state vector representing  an essential model 
of  the action routine. 
Couple  the  output  from  step 6 to  the  executable  automaton produced in step 5. 
Execute the overall action routine piping its real time output to  the  LTL  automaton  as it is produced.  A 
fault condition will then  drive  the  LTL  automaton into one  of its accepting  states indicating that  the 
associated requirement  has  been violated. When  this condition is detected, respond  autonomously to  the 
fault. If  this is not feasible, notify ground control and  begin to  safe  the  spacecraft  as  may  be  apropos  of 
the situation. 

1.2 Critique of Recommendations 

The production of  the executable  LTL  automaton cited in step 5 need  not  be  a  complex  stumbling block. For 
example, safety conditions on total available  power,  maximum turn angles, antenna  pointing  and  the  like  are 
easily quantified. The  production  of an  automaton  that  checks  for a liveness condition  has already been 
illustrated in this section for design  anomaly three of  the spacecraft controller checkpoint process. 
Additionally, any of several other automata  systems  could  be  used  depending  on  analyst choice. 

The  advantage  of  the  system  proposed  here is that detailed knowledge  of  the  underlying  spacecraft  software 
is not required nor  would it ever be necessary.2 Once  the appropriate data structures  governing  the 
requirements are located, they can  be  output  to  the  LTL  automaton in the form of  an abstracted state vector. 
Additionally, if  the autonomous  system  makes  use of  an architecture analogous to  the High  Speed  Simulator 
architecture, the process  would  be  considerably  more straightforward and precise. Here,  once  the  appropriate 
data  structures  were identified, they  would  be easily tagged  for inclusion in the abstracted state vector. All of 
this is again easily an automation step. In  this latter case, consideration of  the  action routine per se would  be 
minimized. 

The usefulness of  the procedure  described  here is that  the  automata theory is well understood, predictable, 
and easily programmable.  Systems  engineers  would  however  have  somewhat of a learning  curve  to  become 
proficient in expressing  requirements specifications in the linear temporal logic. 

It  might  be  argued  that  because  the  low level sequence  and  requirments  are  derived  from  high level mission 
objectives that  AVS derived requirements  are  of  course  always  going to  work out. This  would  be the  case 
should it be  proven  that  the  deductive logic used  in  producing detailed low level commands  is valid in all 
circumstances. Therefore, one  might  argue  what is the point of  the  procedure at  all?  However,  such  an 
argument  would  not  be valid for it is a physical spacecraft in a physical universe dynamically  making 
decisions about its environment. First, things  can  and  do often go awry  aboard the spacecraft. Single Event 
Upsets, bus failures, cameras  jamming,  valves  freezing  up  or not opening properly on  first try, squibs misfire 
and a host of others. Second,  estimates  of relative locations of external objectives  can  be  misjudged.  If 
distance  estimates are accurate, angles  and velocities can  be  way  off  due  to  low  measurement resolution in 
the  region  where  they  are  made. 

Although the  example in the  text  used  a  single  AVS,  the  number  of threads that  might  be  running  scales 
linearly. Accordingly,  many  such  AVSs  could  be  dynamically created as required and released when no 
longer necessary. Also, there is  no reachability problem here as  occurs  in  model  checking  due  to  the on-the- 

The  Time  Rover  Company  discusses  their  innovative  test  system  at  http://www.time- 
rover.com/SpecLanP;.html. It  embeds LTL logic in the form  of  language  statements  within executable 
routines. Accordingly, it may be difficult to implement  such a system  within the  context  discussed here 
where on-the-fly valldation is required for newly  generated procedures. 

http://www.time


fly-one-time  nature  of  the  problem  here. We are in fact only interested in current  behavior,  not in all possible 
future behaviors.  Therefore an AVS for maximum and minimum angles, power, closest distance  of 
approach, and the  like could be  easily and dynamically configured for each scenario to be  carried  out. 

Accordingly, the  AVS  system  described here can provide a powerful, fast, reliable, first line of defense 
towards  assuring  mission success in the Laboratories' unmanned exploration efforts of the 21St century. 

Formalization of the Model Checking Process 

Having successfully shown the applicability of the model checking process on a spacecraft 
system, we decided to formalize the methodology.  Our  introduction of the modeling technique 
was via the use of a "process chart."  A process chart is a flowchart that details the methodology 
that is applied to accomplish in our case a  quality assurance technique. There are currently 21 
processes for which process charts exist. Example process charts include Training, Risk 
Assessment, Requirements Assessment and Design Assessment. In addition to the process chart, 
each process also has an accompanying  summary that details the contents of the process flow. 
The purpose of the process charts is to (a) document  our own processes (b) to be able to convey 
in a clear and unambiguous way to our customers what our QA processes are and (c) in cases 
where customers want further assistance, we give  guidance to them on how they can carry out 
their part of the resulting interface. The model checking verification and validation process chart 
includes high level guidance on how incremental design modeling is carried out over a project 
lifecycle for reactive systems and their components. This includes using the results of 
incremental design modeling to check to see if the design anomalies are present in  an 
implementation. Callahan and  Montgomery have discussed the use of this approach adopted here 
within the context of a  model-checking environment in their development of the RMP Protocol 
[8]. In addition to using  model checking to find design anomalies, the implementation is also 
checked in an incrementally evolving development environment. If a  faulty design is 
subsequently corrected, the condition of the implementation can  then  be checked to  see that it 
reflects the new design. Conversely, should the partial implementation get ahead of the partial 
design, then the implementation can be  used to check the design. In this way an evolving partial 
implementation and  a partial design can be driven to maintain phase coherence with each other. 
The process thereby yields an implementation that has  a  much  higher confidence level associated 
with it. Additional details concerning this approach can be found in [9]. 

Ongoing Work 

A test harness similar to the one we have used on the generic spacecraft validation effort is being 
constructed for a future series of deep space missions called  X2000.  Presently X2000 includes 
missions to Pluto and Europa. We are planning to  use the validation methodology described here 
on the X2000 project. 

Summary 

We have shown model checking to be a viable and  useful  technology  to  apply towards making 
future spacecraft designs and their corresponding implementations more  robust.  A method was 
suggested  whereby  a validation scheme called the Automated Validation System could be used 
to provide an analytic framework to wrap conventional fault detection and response mechanisms 



aboard autonomous spacecraft. The Verification and Validation process using model checking 
was fo’malized at the Laboratory by adding the Model  Checking process to our Office 506 
Quality Assurance process methodology system. Our effort at applying the technology to future 
spacecraft is a  work in progress.  We  plan to publish a  more detailed analysis of the results given 
in this paper. 

References 

Francis L. Schneider, Steve  M. Easterbrook, John R. Callahan,  and  Gerard J. Holzmann: 
Validating Requirements for Fault Tolerant Systems using Model Checking. I C E  
1998: 1-13. 

Michael R. Lowry, Klaus Havelund, John R.  Penix: Verification and Validation of AI 
Systems that Control  Deep-Space Spacecraft: ISMS 1997: 35-47 

D. Harel, “Statecharts: A  Visual  Formalism for Complex Systems,” Science of computer 
Programming, vol. 8, pp. 23 1-74, 1987. 

G. J. H~lzmann, “The Model  Checker Spin,” IEEE Transactions on  sofhvare  Engineering, 
V O ~ .  23,  pp.  279-295,  1997. 

Reinholtz, WK and Robison,  WJ.,III, “TheZIPSIM series of high-performance, high fidelity 
spacecraft simulators,” Proceedings AIAA/Utah State University Annual Conference on 
Small Satellites, Aug  29-sept  1, 1994. 

Patel, K and Reinholtz,  W and Robison, W, “High-speed simulator:  A simulator for all 
seasons”, Proceedings International Symposium  on Space Mission Operations and Ground 
Data Systems (SPACEOPS96, Munich,  Germany Sept 16-20 1996; pg 749-756 

L.K. Dillon and Y.S.  Ramakrishna: Generating Oracles From Your Favorite Temporal 
Logic specifications: SIGSOFT’96 CA, USA  106-1 17 

J. R. Callahan and T. L.  Montgomery: An Approach to Verification and Validation of a 
Reliable Multicasting Protocol:  ISSTA 96: 187-194 

John Callahan, Francis Schneider, Steve Easterbrook: Automated Testing Using Model- 
Checking: Invited talk Bellcore division of Bell-Laboratories: 1996 - see also 
h t t p : / / s w a y e r / - s c h /  

N. Muscettola, B. Smith, C. Fry, S. Chien, K. Rajan, G. Rabideau,  and D. Yan. “On- 
Board Planning for New Millennium Deep Space  One  Autonomy,” Proceedings of the 
IEEE  Aerospace conference, Snowmass CO, 1997. 

http://swayer/-sch

